絶対収束と条件収束

Wednesday, April 12, 2018
Akio Arimoto

1. 絶対収束

複素数を項とする級数 \(\sum z_n \) が収束のとき、各項の絶対値をとった級数 \(\sum |z_n| \) も収束するときは絶対収束、そうでないときは条件収束という。

絶対収束するとき、\(\sum z_n \) の項を入れ替えて得る級数 \(\sum z'_n \) も同じ値に収束するが条件収束する加える順番をいれかえ \(\sum z'_n \) を様々な値にすることができる。

1.1 \(\sum z_n \) が絶対収束のとき項を入れ替えた級数 \(\sum z'_n \) も絶対収束する

\(\sum z_n \) が収束するとき部分和 \(s_n = \sum_{k=1}^{n} z_k \) と並び替えた部分和 \(s'_n = \sum_{k=1}^{n} z'_k \) を考える。
\(\{z'_1, z'_2, \ldots, z'_n\} \subset \{z_1, z_2, \ldots\} \) であるから \(\sigma'_n = \sum_{k=1}^{n} |z'_k| \leq \sum_{k=1}^{\infty} |z_k| \) であり、\(\sigma'_n \) は上に有界な増加数列であるから収束する。すなわち、\(\sum z'_n \) の絶対収束が言える。

1.2 \(\sum z'_n \) は \(\sum z_n \) と同じ値である

部分和 \(s_n = \sum_{k=1}^{n} z_k \) と \(s'_m = \sum_{k=1}^{m} z'_k \) を考える。
\(\{z'_1, z'_2, \ldots\} \) は \(\{z_1, z_2, \ldots\} \) を入れ替えたものだから、\(z_1 = z'_1 \in \{z'_1, z'_2, \ldots\} \) を見つけることができる。また同様に、\(z_2 = z'_2, \ldots, z_n = z'_n \) となる

\(z'_1, z'_2, \ldots, z'_n \in \{z'_1, z'_2, \ldots\} \) を見つけることができる。そこで、十分おおきな \(m \) を選んで \(\{z_1, z_2, \ldots, z_n\} = \{z'_1, z'_2, \ldots, z'_n\} \subset \{z'_1, z'_2, \ldots z'_m\} \) となるようにすると

\(\{z'_1, z'_2, \ldots z'_m\} \subset \{z_1, z_2, \ldots, z_n, \ldots\} \) であるから。\(|s'_m - s_n| \leq \sum_{k=n+1}^{\infty} |z_k| \) 。また、\(n \to \infty \)
のとき \(\sum_{k=n+1}^{\infty} |z_k| \to 0 \) かつ \(m \to \infty \) であることを考慮すると \(s_n \) と \(s'_m \) は同じ値に収束しなければならない。
しかし一つ問題が残る・・・・
「十分大きな \(m \) をとると \(\{z_1, z_2, \ldots, z_n\} \subset \{z'_1, z'_2, \ldots, z'_m\} \) とできる」

\(s'_1 \) は \(z_1 \) を含まない。 \(s'_2 \) は \(z_1 \) を含まない。 \(s'_3 \) は \(z_1 \) を含まない。・・・・\(s'_m \)は \(z_1 \) を含まない。・・というように \(s'_1, s'_2, \ldots, s'_m, \ldots \) という無限列をとったときはどうするのか？1.1 で \(\lim s'_m \) の収束は示したが、どこまで行っても \(z_1 \) を含まない無限列 \(s'_1, s'_2, \ldots, s'_m, \ldots \) はとれる。その極限は本当に \(z_1 \) を含む \(s_n \) の極限と同じなのだろうか？\(1=0.999 \cdots \)（何故なら \(1/3 = 0.3333 \cdots \) の両辺を 3 倍）、アキレスと亀と同じ迷宮に入ってしまう。

2. 条件収束
条件収束の具体的な場合を調べよう。\(1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \cdots \) は発散であるが、

\[
1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} - \log n \quad \text{は収束して} \quad n \to \infty \quad \text{としたとき、}
\]

\[
\gamma = 0.57721566490153286060 \cdots \quad \text{なるオイラーの定数になることが知られている。}
\]

上の級数でittal 1.1 と奇数番目で符号を変えた \(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \) は収束する。これに対して以下のようにしてわかる。等比級数

\[
\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots \quad \text{は} \quad |x| < 1 \quad \text{なら正しい（一様収束）。}
\]

両辺を項別に積分して \(\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \) が得られる。

右辺 \(x = 1 \) でも収束であるから \(x = 1 \) とすると \(\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \) である。

他方、偶数番目の和 \(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots = \infty \) 奇数番目の和 \(\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \cdots = \infty \)

で \(\infty - \infty \) とも解釈できる。じつは足し算の順序を入れ替えると右辺は任意の値に収束させることができる。実際、順序を変えて正の項 \(p \) 個、負の項 \(q \) 個ずつ
交互にとった級数 \(s_n = \sum_{k=1}^{n} a_k \) は \(\lim s_n = \log 2 + \frac{1}{2} \log \frac{p}{q} \) となる。つまり、\(p = q \) のときは \(\log 2 \) のままであるが、\(p, q \) を適当に変化させれば任意の他の値に収束させることができる。これを示そう。

少し長くなるので具体的な証明に入る前にその方針を述べる。例えば、\(p \neq q \) のときは \(\log 2 \) のままであるが、\(p \neq q \) を適当に変化させれば任意の他の値に収束させることができる。これを示そう。

いま山だけを眺めていきその \(n \to \infty \) とした収束先を探める。また谷だけを眺めていき \(n \to \infty \) とした収束先を探める。これらが一致しているならそれが求める \(\lim s_n \) である。

もう一度上の場合をみなおすと

谷:
\[
\left(1 + \frac{1}{3} + \frac{1}{5} \right) - \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} \right) - \left(1 + \frac{1}{6} + \frac{1}{8} \right) - \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} \right) - \left(1 + \frac{1}{6} + \frac{1}{8} \right)
\]

山:
\[
\left(1 + \frac{1}{3} + \frac{1}{5} \right) - \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} \right) - \left(1 + \frac{1}{6} + \frac{1}{8} \right) + \left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} \right) + \left(1 + \frac{1}{6} + \frac{1}{8} \right)
\]
ようなパターンが繰り返していく。一般に谷はnp項の奇数部分からnq項の偶数部分をひいたもの：たとえばn=2で

\[
\left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \frac{1}{17} \right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} \right)
\]

のようなパターンが繰り返していく。一般に谷はnp項の奇数部分からnq項の偶数部分をひいたもの：たとえばn=2で

\[
\left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \frac{1}{17} \right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} \right)
\]

のようなパターンが繰り返していく。一般に谷はnp項の奇数部分からnq項の偶数部分をひいたもの：たとえばn=2で\n
\[
\left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \frac{1}{17} \right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} \right)
\]

のように書ける。

\[
S_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}
\]

とおく。上の谷や山はSnの組み合わせで表すことができる。たとえば

\[
\left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} \right) = \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right)
\]

であるから\n
\[
\left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \frac{1}{15} + \frac{1}{17} \right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} \right) = S_{12} - \frac{1}{2} S_6 - \frac{1}{2} S_4
\]

のように書ける。

一般的なp,qの場合は

\[
S_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} = \log n + \gamma + \varepsilon_n, \varepsilon_n \to 0
\]

に注意して、

山：\n
\[
s_{(n+p)} = S_{2np} - S_{np} / 2 - S_{nq} / 2 = \log 2 + \frac{1}{2} \log \frac{p}{q} + \varepsilon_{2np} - \frac{1}{2} \left(\varepsilon_{np} + \varepsilon_{nq} \right)
\]

谷：\n
\[
s_{(n+p)+p} = S_{2(n+1)p} - S_{(n+1)p} / 2 - S_{nq} / 2
\]

\[
= \log 2 + \frac{1}{2} \log \frac{p}{q} + \varepsilon_{2(n+1)p} - \frac{1}{2} \left(\varepsilon_{(n+1)p} + \varepsilon_{nq} \right) + \frac{1}{2} \log \frac{n+1}{n}
\]

とおく。そして、\n
\[n \to \infty\]のとき、右辺の\[\varepsilon\]内は\[0\]へ行くことから

山→\[\log 2 + \frac{1}{2} \log \frac{p}{q}\]、谷→\[\log 2 + \frac{1}{2} \log \frac{p}{q}\]となり、\[\lim s_n = \log 2 + \frac{1}{2} \log \frac{p}{q}\]

が証明される。