A Consideration on Kerawala’s Method for Poncelet Porism in Two Circles

Akio Arimoto
October 18, 2011

1. We have two circles with radius \(R \) and \(r \), respectively: \(S \equiv x^2 + y^2 - R^2 = 0 \) and \(s \equiv (x - d)^2 + y^2 - r^2 = 0 \) in the x-y plane. Although Kerawala treated various cases in a general set up, we restrict here our study to the standard case where the large circle \(S \) completely contains the small circle \(s \) inside, that is we will assume \(R - r > |d| \). If the chord joining the points \(A_i(R \cos \theta_i, R \sin \theta_i) \) and \(A_{i+1}(R \cos \theta_{i+1}, R \sin \theta_{i+1}) \) on the circle \(S \) touches the circle \(s \), we must have

\[
R \cos \frac{1}{2}(\theta_{i+1} - \theta_i) - d \cos \frac{1}{2}(\theta_{i+1} + \theta_i) = r,
\]

which is easily found by drawing the picture. On writing \(t_i = \tan \frac{\theta_i}{4} \), we have the following lemma.

Lemma 1.1

\[
(1.2) \quad (R - d + r)(t_i + t_{i+1})^2 + (R + d + r)(1 - t_i t_{i+1})^2 = 2R(1 + t_i t_{i+1})^2
\]

\(i = 0, 1, 2 \cdots \)

Proof) Substituting

\[
\cos \left(\frac{\theta_{i+1} - \theta_i}{2}\right) = \frac{1 - \tan^2\frac{\theta_{i+1} - \theta_i}{4}}{1 + \tan^2\frac{\theta_{i+1} - \theta_i}{4}} = \frac{(1 + t_i t_{i+1})^2 - (t_{i+1} - t_i)^2}{(1 + t_i t_{i+1})^2 + (t_{i+1} - t_i)^2}
\]

\[
\cos \left(\frac{\theta_{i+1} + \theta_i}{2}\right) = \frac{1 - \tan^2\frac{\theta_{i+1} + \theta_i}{4}}{1 + \tan^2\frac{\theta_{i+1} + \theta_i}{4}} = \frac{(1 - t_i t_{i+1})^2 - (t_{i+1} + t_i)^2}{(1 - t_i t_{i+1})^2 + (t_{i+1} + t_i)^2}
\]

into (1.1), we have

\[
R \left\{ (1 + t_i t_{i+1})^2 - (t_{i+1} - t_i)^2 \right\} - d \left\{ (1 - t_i t_{i+1})^2 - (t_{i+1} + t_i)^2 \right\}
\]
\begin{align*}
&= r \left\{ (1 - t_i t_{i+1})^2 + (t_{i+1} + t_i)^2 \right\}, \\
&\text{from which we have the desired result.} \tag*{\phantom{\text{.}}}
\end{align*}

Now let \(2u^2 = R - d + r, \ 2v^2 = R + d + r, \ w^2 = R.\) Then we rewrite (1.2) as
\[(1.3) \quad u^2 (t_i + t_{i+1})^2 + v^2 (1 - t_i t_{i+1})^2 = w^2 (1 + t_i t_{i+1})^2\]
And similarly for \(t_i\) and \(t_{i-1}\) we have
\[u^2 (t_i + t_{i-1})^2 + v^2 (1 - t_i t_{i-1})^2 = w^2 (1 + t_i t_{i-1})^2.\]
No loss of generality if we set \(\theta_0 = 0\) or \(t_0 = 0\), then we have
\[(1.4) \quad t_i^2 u^2 = w^2 - v^2.\]
Hence considering the quadratic equation of the unknown \(x:\)
\[(1.5) \quad u^2 (t_i + x)^2 + v^2 (1 - t_i x)^2 = w^2 (1 + t_i x)^2,\]
we have two roots \(x = t_{i-1}\) and \(x = t_{i+1}.\) Since (1.5) becomes
\[(1.6) \quad \left(u^2 + (v^2 - w^2) t_i^2 \right) x^2 + 2t_i \left(u^2 - v^2 - w^2 \right) x + \left(u^2 t_i^2 + v^2 - w^2 \right), \]
\[= u^2 \left(1 - t_i^2 t_{i-1}^2 \right) x^2 + 2t_i \left(u^2 - v^2 - w^2 \right) x + u^2 \left(t_i^2 - t_{i-1}^2 \right) = 0,\]
we have by using relation between coefficients and zeros of the above equation,
\[(1.7) \quad t_{i-1} + t_{i+1} = \frac{-u^2 + v^2 + w^2}{u^2} \frac{2t_i}{1 - t_i^2 t_{i-1}^2} \]
and
\[(1.8) \quad t_{i-1} t_{i+1} = \frac{t_i^2 - t_{i-1}^2}{1 - t_i^2 t_{i-1}^2} \]
so that
\[(1.9) \quad \frac{t_{i-1} + t_{i+1}}{1 - t_{i-1} t_{i+1}} = \frac{-u^2 + v^2 + w^2}{u^2 - v^2 + w^2} \frac{2t_i}{1 - t_i^2}.\]
We will notice here the relation between \(t_{i-1}\) and \(t_{i+1}\) is similar to the relation (1.3) between \(t_i\) and \(t_{i+1}.\) In fact, we can get the exactly same form as (1.3) except for the coefficients \(a^2, b^2, c^2\) instead of \(u^2, v^2, w^2.\)
Lemma 1.2

\[(1.10) \quad a^2(t_{i-1} + t_{i+1})^2 + b^2(1 - t_{i-1}t_{i+1})^2 = c^2(1 + t_{i-1}t_{i+1})^2,\]

where \(a^{-1} = R + d, \ b^{-1} = R - d, \ c^{-1} = r, \ i = 0, 1, 2 \ldots\)

By (1.4), \(t_i^2 = \frac{v^2 - w^2}{u^2}, \ 1 + t_i^2 = \frac{u^2 + w^2 - v^2}{u^2} = \frac{2(R - d)}{R - d + r}\) and

\[1 - t_i^2 = \frac{u^2 - w^2 + v^2}{u^2} = \frac{2r}{R - d + r}. \]

We have from (1.7)

\[t_{i-1} + t_{i+1} = \frac{-u^2 + v^2 + w^2}{u^2} \times \frac{2t_i}{1 - t_i^2t_i^2} = \frac{2(R + d)}{R - d + r} \times \frac{2t_i}{1 - t_i^2t_i^2}. \]

From (1.8)

\[1 - t_{i-1}t_{i+1} = 1 - \frac{t_i^2 - t_i^2}{1 - t_i^2t_i^2} = \frac{(1 - t_i^2)(1 + t_i^2)}{1 - t_i^2t_i^2} \quad \text{and} \quad 1 + t_{i-1}t_{i+1} = \frac{(1 + t_i^2)(1 - t_i^2)}{1 - t_i^2t_i^2}.

Hence

\[a^2(t_{i-1} + t_{i+1})^2 + b^2(1 - t_{i-1}t_{i+1})^2 - c^2(1 + t_{i-1}t_{i+1})^2\]

\[= \left(\frac{1}{R + d}\right)^2 \frac{4(R + d)^2 \times 4t_i^2}{(R - d + r)^2(1 - t_i^2t_i^2)^2} + \left(\frac{1}{R - d}\right)^2 \frac{(1 - t_i^2)^2}{(1 - t_i^2t_i^2)^2} \times \frac{4(R - d)^2}{(R - d + r)^2}

- \frac{1}{r^2} \frac{(1 + t_i^2)^2}{(1 - t_i^2t_i^2)^2} \times \frac{4t_i^2}{(R - d + r)^2} = 0\]

From (1.10) we have counterparts of (1.7)-(1.9):

\[(1.11) \quad t_{i-2} + t_{i+2} = \frac{-a^2 + b^2 + c^2}{a^2} \times \frac{2t_i}{1 - t_i^2t_i^2},\]

\[(1.12) \quad t_{i-2}t_{i+2} = \frac{t_i^2 - t_i^2}{1 - t_i^2t_i^2},\]

\[(1.13) \quad t_{i-2} + t_{i+2} = \frac{-a^2 + b^2 + c^2}{a^2 - b^2 + c^2} \times \frac{2t_i}{1 - t_i^2}.\]