Lecture 14

前回

F: 体
$GL_n(F)$ 群 $(A,.)$ ベクトル空間 F^n の自己同型

$O_n(F)$ 内積 $(v,w)=\sum_{i=1}^{n} v_i w_i$ を変えない $GL_n(F)$ の部分集合

$SO_n(F) \subset O_n(F) \subset GL_n(F)$

$O_n(F)=\{A:A' A = I\}$ を書ける。

$A \in O_n(F) \Rightarrow (\det A)^2=+1$

――――――――――――――

F において $X^2-1=(X+1)(X-1)=0$ は高々 2 つの根をもつ $\Rightarrow \det A = \pm1$。

もし、F において $1 \neq -1$ の場合、

$SO_n(F) \triangleleft O_n(F)$

$\{ A : A^t = A^{-1} \ \& \ \det A = \pm1 \}$

という図式が成り立つ。

$F=\mathbb{R}$ の場合、A が内積 (v,w) を変えないとき、そのノルムも変えない。ノルム

は $\|v\| = \sqrt{(v,v)} = \sqrt{\sum_{i=0}^{n} v_i^2} \geq 0$ をみたす。さらにこの場合

$\cos \theta = \frac{(v,w)}{\|v\|\|w\|}$ から決まる角度 θ も変えない。$0 \leq \theta \leq \pi$
一般の F において、$A \in O_n(F)$ の固有値 λ に属する固有ベクトルを v とすると、$Av = \lambda v$ であるから、A が内積を保存することを使うと

$$\langle v, v \rangle = \langle Av, Av \rangle = \lambda^2 \langle v, v \rangle$$

を得、両辺を $\langle v, v \rangle \neq 0$ で割ると

$$\lambda^2 = 1$$

すなわち、$A \in O_n(F)$ の固有値は $\lambda = \pm 1$ の 2 つある。

What do transformations A in $SO(2)$ look like?

$$A = \begin{pmatrix} Ae_1 & Ae_2 \\ \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \text{rot}(\theta) \quad \text{(rotation by)}$$

$SO(2) = SO_2(\mathbb{R})$ に属する行列 A はどのように見えるだろうか？$e_1 = (1,0)$ と

$$e_2 = (0,1)$$

すると、長さを変えないように Ae_1 は円周上にあり、上の図形で円周上の点を x, y 座標を極座標で書くと $Ae_1 = (\cos \theta, \sin \theta)$ を得る。$e_1 = (1,0)$ と

$$e_2 = (0,1)$$

は直交しているから、Ae_1 と Ae_2 は直交する。つまり円周上の
$Ae_2 = (\sin \theta, -\cos \theta)$ と $Ae_2 = (\sin \theta, -\cos \theta)$ の 2 点が候補に挙がるが、A の行列表
現で $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ と $A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ の二つの候補のうち、$\det A = +1$ という条件から、あとの候補は捨てられる。したがって $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ が
$SO(2)$ に属する行列ということになる。つまり、$SO(2)$ という群は平面上の
ベクトルを反時計回りにある角度 θ だけ回転する変換から成っている。
$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ を $\text{rot}(\theta)$ と書くことにすると、
$$
\text{rot}(\theta) \cdot \text{rot}(\psi) = \text{rot}(\theta + \psi)
$$
のように、積演算は角度の和となる。したがってこれは可換（アーベル）群である。いま、次のような同型fを考えることができる。
$$
\begin{align*}
SO(2) &\overset{f}{\longrightarrow} \{ z \in \mathbb{C} : |z| = 1 \} \\
A = \text{rot}(\theta) &\longmapsto z = e^{i\theta} = f(e_1)
\end{align*}
$$
注意：$SO(2)$ は可換群だが、$O(2)$ は可換群でない。
それでは、$O(2) - SO(2)$ に属する変換 A とはどんなものだろう？
つまり $A' = A^t$ をみたし、$\det A = -1$ の形状はどんなものだろう？
主張：そのような A は 2 つの互いに直交する固有値 1 と -1 に属する固有ベクトル v_1, v_2 からなる。$Av_1 = v_1, Av_2 = -v_2$ そして、基底 (v_1, v_2) に関する行列は
$$
A = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix}
$$
である。
証明）A の固有方程式は $X^2 - Tr(A)X + \det A = X^2 - Tr(A)X - 1 = 0$ である。この方程式の根は実数である。と言うのは複素根を持っているが実数係数の 2 次方程式の 2 根は共役となる。すなわち、z, \bar{z} をその 2 根とするとき
\[X^2 - Tr(A)X + \det A = (X - z)(X - \bar{z}) \quad \text{より、} \quad \det A = z\bar{z} > 0 \quad \text{となり} \quad \det A = -1 \quad \text{と矛盾してしまう。そこで、固有方程式の 2 実根（固有値）を} \lambda_1, \lambda_2 \quad \text{とおくと、} \quad \lambda_1\lambda_2 = -1 \]
を満たす。そこで、A の固有値 λ は $\lambda^2 = 1$ を満たす 0（A は長さを変えない変換であるから、固有値 λ と固有ベクトル $v \neq 0$ にたいして、

\[(v, v) = (Av, Av) = (\lambda v, \lambda v) = \lambda^2 (v, v) \quad \text{より。したがって、} \quad \lambda_1 = 1, \lambda_2 = -1 \quad \text{となり、} \quad Av_1 = v_1, Av_2 = -v_2 \quad \text{および} \quad A = \begin{pmatrix} +1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{がわかる。} \]

$Av_1 = v_1, Av_2 = -v_2$ における固有ベクトルは互いに直交している。実際、

\[\langle v_1, v_2 \rangle = \langle Av_1, Av_2 \rangle = \langle v_1, -v_2 \rangle = -\langle v_1, v_2 \rangle \quad \text{より、} \quad \langle v_1, v_2 \rangle = 0 \quad v_1 \perp v_2 \quad \text{。} \quad \text{結局} \quad A \quad \text{の幾何学的な意味は、} v_1 \quad \text{を延長した直線} \mathbb{R}v_1 \quad \text{についての鏡映であることがわかる。したがって} \quad A^2 = I \quad \text{(reflection)} \circ \text{(reflection)} = 1 \]
鏡映を2回行うことは、ある角度の回転になる。このことは \(\det A = \det B = -1 \) のとき \(\det(AB) = \det A \cdot \det B = -1 \cdot -1 = 1 \) となることからもわかる。

オイラー (Euler) の定理

\(A \in SO(3) \) は固有値+1を持つ。したがってある \(v \in \mathbb{R}^3 \) が存在して、\(Av = v \) を満たす。（オイラーの言い方：\(S^2 \subset \mathbb{R}^3 \) を保存する運動は、その運動が向きを変えないとき、回転軸ももつ。3次元空間 \(\mathbb{R}^3 \) で円 \(S^2 \) を動かさない運動はある軸 \(v \) の周りの回転である。)

証明） 固有多項式 \(f(X) \) は実数係数を3次の多項式である。\(f(X) = 0 \) は3つの根を持つが、可能性としては、すべて実根 \(\lambda_1, \lambda_2, \lambda_3 \) の場合と、ひとつ実数根 \(\lambda \) 、残り2つは互いに共役な複素根 \(z, \bar{z} \) の場合である。実数係数3次多項式は連続関数で、\(x \to -\infty \) で \(f(x) \to -\infty \) 、\(x \to \infty \) で \(f(x) \to \infty \) となり、\(x \) を \((-\infty, \infty) \) の間を増加させていくとどこか \(x \) で \(f(x) \) の値がマイナスからプラスへ変わる、つ
まり少なくとも1個は \(f(X) = 0 \) の実数根がなければならない（中間値の定理）からである。また、\(A \) は \(SO(3) \) の要素であるから長さは変えず、固有値の絶対値は1である（\(\langle v, v \rangle = \langle Av, Av \rangle = \langle zv, zv \rangle = |z|^2 \langle v, v \rangle \)）。したがってすべて実根 \(\{\lambda_1, \lambda_2, \lambda_3\} \) の場合 \(\lambda_1 \lambda_2 \lambda_3 = \det A = 1 \) で \(\lambda_i = \pm 1 \), \(i = 1, 2, 3 \) であるか、ひとつ実数根、残り2つは互いに共役な複素根 \(\{\lambda, \bar{\lambda}, \bar{\lambda} \} \) の場合 \(\lambda \bar{\lambda} = \det A = 1 \), \(\bar{\lambda} = \bar{\lambda} \) いずれの場合もこれらの条件から、\(\lambda = 1 \) という固有値を持つことが結論される。

命題 \(A \) は \(v \) に直交する平面を保存する。ただし、\(v \) はオイラーの定理で存在が保証された、固有値1に属する \(A \) の固有ベクトル（\(Av = v \)）を基底とする。その結果 \(v, e_1, e_2 \) を基底とする \(A \) の表示は

\[
A = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\]
という形になるが、\(\det A = +1 \) であるから右下の \(2 \times 2 \) （四角い部分）の部分行列の行列式も +1 であり、\(SO(2) \) の要素であることがわかる。結局 \(A \) は直線 \(\mathbb{R}v \) のまわりの角度 \(\theta \) の回転 \(\text{rot}(\theta) \) となる。

剛体運動（rigid motion）
\(\mathbb{R}^n \) における 2 点 \(v,w \) 間の距離 \(d(v,w) = \|v-w\| \) を変えない \(\mathbb{R}^n \to \mathbb{R}^n \) の運動は剛体運動と呼ばれる。ここで、運動とは \(\mathbb{R}^n \to \mathbb{R}^n \) の関数のことである。

命題 \(m \) を剛体運動とする。いま、\(m(0) = 0 \) を満たすとき、\(m \) は \(O(n) \) に属する線形変換である。

証明）\(\langle m(v), m(w) \rangle = \langle v, w \rangle \) を示せばよい。

\[
\|v-w\|^2 = \langle v-w, v-w \rangle = \|v\|^2 + \|w\|^2 - 2\langle v, w \rangle ,
\]
\[
\|v-w\|^2 = \|m(v)-m(w)\|^2 = \|m(v)\|^2 + \|m(w)\|^2 - 2\langle m(v), m(w) \rangle ,
\]
であり、\(\|v\|^2 = \|m(v)\|^2 , \, \|w\|^2 = \|m(w)\|^2 \) を用いれば、\(\langle m(v), m(w) \rangle = \langle v, w \rangle \)がわかる。■

\(O(n) \subset G = "\text{剛体運動の群} \) が言えた。ほかに”剛体運動の群” \(G \) の部分群とし
て、ある \(b \in \mathbb{R}^n \) についての \(b \) だけの移動（translation）がある：\(t_b(v) = v + b \)。

移動の合成は \(t_b \circ t_{b'} = t_{b+b'} \)。

実は剛体運動の群 \(G \) について次のことを使ることができる。

\[
\text{group} \downarrow \text{rigid motion} \quad = \quad \mathbb{R}^n \rtimes O(n)
\]

どのような剛体運動も一意的に移動と \(O(n) \) の要素との合成を書ける。

注意：この \(\mathbb{R}^n \) のコピーは \(G \) の正規部分群である。