§ Finish-up from Last time

Let $G 	riangleright H$ (H is a normal subgroup of G) and f be a homomorphism such that

$$G \xrightarrow{f} G/H = \text{quotient group}\left(\text{the cosets of } H\right)$$

$$a \mapsto aH.$$

Let K be a subgroup of G, which can be written as $G 	riangleright K 	riangleright H$ (H is necessarily a normal subgroup of K because if H is normal in G i.e. $aH = Ha$ for all $a \in G$ then we have $aH = Ha$ for all $a \in K \subseteq G$).

1) H is normal in K, so we have a group $K/H \subset G/H$ so K/H is a subgroup of G/H.

In other words, the cosets $\subset K$ are stable under multiplication as K is a subgroup and stable under multiplication.

2) Conversely any subgroup of G containing H corresponds to a subgroup of G/H in this manner. This is very powerful!
Example \(G = \mathbb{Z} \) (group under addition) and \(p \) is a prime number, \(H = p\mathbb{Z} \).

Claim. If \(\mathbb{Z} \supset K \supset p\mathbb{Z} \) is a subgroup, then either \(K = \mathbb{Z} \) or \(K = p\mathbb{Z} \).

(We call this situation \(H = p\mathbb{Z} \) is a maximal subgroup of \(G \)).

Proof. Such \(K \) gives a subgroup of the cyclic quotient group \(\mathbb{Z} / p\mathbb{Z} \). Order of subgroup must be a divisor of \(p \). So gives either O (order 1) or \(\mathbb{Z} / p\mathbb{Z} \) (order \(p \)).

§ Vector spaces (over reals \(\mathbb{R} \) or complex numbers \(\mathbb{C} \))

\(V \) over \(\mathbb{R} \):

1) abelian group:

operation + \(v + w \)

identity \(O_v \)

inverse \(-v \)

2) Scalar multiplication by \(c \in \mathbb{R} : v \mapsto cv \)

such that \(1 \cdot v = v \), \((a \cdot b) v = a(bv) \), \(a(v_1 + v_2) = av_1 + av_2 \), \((a+b)v = av + bv \)

Example:

1. \(V = \{0\} \) stupid one element vector space
2. \(V = \mathbb{R} \)
3. \(V = \mathbb{R}^n \) usual addition an scalar multiplication law

\(\mathbb{R}^n \) has a richer structure: for \(v = (v_1, v_2, \ldots, v_n) \) and \(w = (w_1, w_2, \ldots, w_n) \) we can

define \(v \cdot w = \sum_{i=1}^{n} v_i w_i \) inner product \(\|v\| = \sqrt{\sum_{i=1}^{n} v_i^2} \) norm
§ Vector spaces over a field \(F \)

Definition of a field

Set \(F \) with two operations \(+\) and \(\times\) such that

1. Abelian group under \(+\)

 \[0 = \text{identity element}, \]
 \[-a = \text{inverse} \]

2. \(F^* = F \setminus \{0\} \) forms an abelian group under \(\times\)

 \[1 = \text{identity} \]
 \[a^{-1} = 1/a = \text{inverse} \text{ (every non-zero elements have inverse, which is critical) } \]

3. \(+\) and \(\times\) distribute \(a \times (b + c) = a \times b + a \times c \)

\(\mathbb{Z} \) is not a field.

We call \(F' \subset F \) a subfield if it is closed under \(+\), \(\times\), inverses, etc.

Example: \(\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \) are fields and subfields (where \(\mathbb{Q} \) = rational numbers)

At the very least, 2 element field: \(F \supset \{0,1\} \) (we always assume \(0 \neq 1 \))

The simplest field: \(\mathbb{Z}/2\mathbb{Z} \)

<table>
<thead>
<tr>
<th>(+)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\times)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

More generally, if \(p \) is a prime number, then \(\mathbb{Z}/p\mathbb{Z} \) is a field, with the multiplication inherited from \(\mathbb{Z} \),

To show that \(\mathbb{Z}/p\mathbb{Z} \) is a field, we must show that if \(a \neq 0 \pmod{p} \),
then there is an integer \(b \) such that \(ab \equiv 1 \pmod{p} \). \(b = a^{-1} \pmod{p} \).

Proof: Recall, from 30 minutes ago, that \(p\mathbb{Z} \) is a maximal subgroup of \(\mathbb{Z} \). If \(a \neq 0 \pmod{p} \), then \(a \notin p\mathbb{Z} \). Hence \(p\mathbb{Z} + a\mathbb{Z} \) being a subgroup of \(\mathbb{Z} \)
containing \(p\mathbb{Z} \) implies \(p\mathbb{Z} + a\mathbb{Z} = \mathbb{Z} \). So since \(1 \in \mathbb{Z} \), \(1 \equiv mp + ba \pmod{p} \) or \(1 \equiv ba \pmod{p} \). Euclidean algorithm could also give another proof. (Warning: \(\mathbb{Z}/n\mathbb{Z} \) is not a field if \(n \) is composite.)

Note
\(\mathbb{Z}/p\mathbb{Z} \) is not a subfield of \(\mathbb{C} \!\!\!\!\!/
\)

\(1 \in F \), then \(1 + \cdots + 1 \in F \) (\(n \geq 1 \))

In \(\mathbb{Z}/p\mathbb{Z} \): \(1 + \cdots + 1 = 0 \), while in \(\mathbb{C} \) this is not so.

Galois questioned: What are the finite fields (beyond \(\mathbb{Z}/p\mathbb{Z} \))?

What is the order \(|F|\) ?

Galois proved: For each prime \(p \) and \(n \geq 1 \), there is a unique field \(F \) of order \(p^n \) (up to isomorphism). We'll see this later.

Definition A vector space over a field \(F \) is a set \(V \) with

1. \(V \) is an abelian group under + (identity \(0_v \))

2. There is a scalar product \(F \times V \rightarrow V \), \((c,v) \rightarrow cv \)

\(1 \cdot v = v \quad (ab) \cdot v = a \cdot (b \cdot v) \), \((a + b)v = av + bv \), \(a \cdot (r + w) = a \cdot r + a \cdot w \)

Examples of \(V/F \)

1. \(\{0_v\} \)
2. \(F \)
3. \(F^n \)
4. \(F[X] = \{ \text{all polynomials } p(X) \text{ with coefficients in } F \} \)
\(T:V \rightarrow W \) homomorphism (linear transformation)

\(T(v+w)=Tv + Tw \) group homomorphism

\(T(cv) = cT(v) \)

(bijective homomorphism = isomorphism)

\(\ker T = \{ v:Tv = 0_W \} \) is a subspace of \(V \).

\(\text{Im}T = \{ Tv : v \in V \} \) is a subspace of \(W \).

For \(W \subset V \) we can define the quotient \(V/W \) has a vector space structure.

\(f:V \rightarrow V/W \) is a linear transformation with kernel \(W \).