An integral equation satisfied by the solutions of the van der Pol equation
by Akio Arimoto
Department of Mathematics
Musashi Institute of Technology
July 18, 2007

Our van der Pol equation is

\(\ddot{y} - \varepsilon \left(1 - y^2\right) \dot{y} + y = 0 \)

where \(\dot{y} = \frac{dy}{dt} \) and \(\ddot{y} = \frac{d^2y}{dt^2} \).

We can write this in a matrix form as

\[\dot{x} = Ax - \varepsilon \xi, \]

where

\[A = \begin{bmatrix} 0 & 1 \\ -1 & \varepsilon \end{bmatrix}, \quad x = \begin{bmatrix} y \\ \eta \end{bmatrix}, \quad \xi = \begin{bmatrix} 0 \\ y^2 \eta \end{bmatrix}. \]

Here \(A \) has two eigen values \(r_+, r_- \),

where \(r_+ = \frac{\varepsilon + \sqrt{4 - \varepsilon^2} i}{2} \) and \(r_- = \frac{\varepsilon - \sqrt{4 - \varepsilon^2} i}{2} \).

\(A \) has the spectral representation

\[A = r_+ P_1 + r_- P_2, \]

\[I = P_1 + P_2, \quad P_1 P_2 = P_2 P_1 = 0. \]

Indeed

\[P_1 = \frac{1}{r_+ - r_-} \begin{bmatrix} -r_- & 1 \\ 1 & \varepsilon - r_+ \end{bmatrix}, \quad P_2 = \frac{1}{r_+ - r_-} \begin{bmatrix} r_+ & -1 \\ 1 & r_+ - \varepsilon \end{bmatrix} = \frac{1}{r_+ - r_-} (r_+ - A), \]

which enable us to write the exponential function of \(A \) as

\[e^{At} = e^{r_+ t} P_1 + e^{r_- t} P_2 = \frac{1}{r_+ - r_-} \left\{ \left(e^{r_+ t} - e^{r_- t} \right) A + \left(r_+ e^{r_+ t} - r_- e^{r_- t} \right) \right\}. \]

Using this formula we can make product:

\[e^{At} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \frac{e^{r_+ t} - e^{r_- t}}{r_+ - r_-} \begin{bmatrix} x_2 \\ -x_1 + \varepsilon x_2 \end{bmatrix} + \frac{r_+ e^{r_+ t} - r_- e^{r_- t}}{r_+ - r_-} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \]

Then we can now write the integral equation of the solution for the van der Pol equation (1).
Generally, we can write

\[x(t) = e^{At}x(0) - \mathcal{E}\int_0^t e^{A(t-s)}s(s)\,ds , \]

from which we can easily see that

\[y(t) = \frac{r_+ e^{r_+ t} - r_- e^{r_- t}}{r_+ - r_-} y(0) + \frac{e^{r_+ t} - e^{r_- t}}{r_+ - r_-} \dot{y}(0) - \mathcal{E}\int_0^t \frac{e^{r_+(t-s)} - e^{r_-(t-s)}}{r_+ - r_-} y^2(s) \dot{y}(s)\,ds \]

and

\[\dot{y}(t) = -\frac{e^{r_+ t} - e^{r_- t}}{r_+ - r_-} y(0) + \frac{(r_+ + \mathcal{E}) e^{r_+ t} - (r_- + \mathcal{E}) e^{r_- t}}{r_+ - r_-} \dot{y}(0) - \mathcal{E}\int_0^t \frac{(r_+ + \mathcal{E}) e^{r_+(t-s)} - (r_- + \mathcal{E}) e^{r_-(t-s)}}{r_+ - r_-} y^2(s) \dot{y}(s)\,ds \]