A function whose Maclaurin series converges everywhere but represents the function at only one point.

(Counter examples in analysis, Gelbaum,B.R.;Olmsted,J.M.H. ,Dover, p.68)

The function

(1) \[f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \]

is infinitely differentiable, all of its derivatives at \(x = 0 \) being equal to 0. Therefore its Maclaurin series

(2) \[\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} 0 \]

converges for all \(x \) to the function that is identically zero. However Maclaurin series would not represent the function \(f \). Now we consider the case of complex variable \(z = x + iy \) in (1). That is, let

(3) \[f(z) = \begin{cases} e^{-1/z^2} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \end{cases} \]

Then we see that \(f(z) \) could not be continuous at \(z = 0 \). In fact,

(4) \[f(z) = e^{\frac{-1}{(x+iy)^2}} = e^{\frac{-(x-y)^2}{(x^2+y^2)^2}} = e^{\frac{-(x^2+y^2) + 2xyi}{(x^2+y^2)^2}}, \]

we have

\[|f(z)| = 1 \text{ for } x = y, \text{ on the other hand } |f(z)| = e^{\frac{1}{x^2}} \text{ for } x = 0 \]

and hence \(|f(z)| \rightarrow \infty \text{ for } y \rightarrow 0 \), in other words \(f(z) \) is discontinuous around the origin in the complex plane \(z = (x, y) \).