\[\ddot{x} \pm ax \pm bx^3 = 0 \] has a periodic solution associated to the elliptic function

by Akio Arimoto

Department of Mathematics, Tokyo City University

November 5, 2009

1. Introduction

We will consider differential equations such as
\[\ddot{x} + ax + bx^3 = 0, \quad \ddot{x} - ax + bx^3 = 0, \quad \ddot{x} + ax - bx^3 = 0, \quad \ddot{x} - ax - bx^3 = 0, \]
where \(a > 0, b > 0 \), \(x = x(t) \) differentiable real valued function, \(\dot{x} = \frac{dx}{dt} \) and \(\ddot{x} = \frac{d^2x}{dt^2} \). We will show that the solutions of these equations are linear fractional transformations of Jacobi’s elliptic functions \(sn(t,k), cn(t,k) \) and \(dn(t,k) \). If we multiply \(\ddot{x} + ax + bx^3 = 0 \) by \(\dot{x} \) and integrate it in \(t \), we have \(2\ddot{x}^2 = -2ax^2 - bx^4 + E \) for some integral constant \(E \). We will see show that the solutions of our differential equations have varieties of forms which are dependent on \(E \).

2. Preliminaries

2.1 Cross product

We use a cross product of complex numbers \(\alpha_0, \alpha_1, \alpha_2, \alpha_3 \) defined by
\[
[\alpha_0, \alpha_1, \alpha_2, \alpha_3] = \frac{\alpha_1 - \alpha_0}{\alpha_1 - \alpha_2} \frac{\alpha_2 - \alpha_3}{\alpha_2 - \alpha_0},
\]
and make linear fractional transformations from this, for example \(F(x) = [\alpha_0, x, \alpha_2, \alpha_3] \frac{x - \alpha_0}{x - \alpha_2} \frac{\alpha_3 - \alpha_2}{\alpha_3 - \alpha_0} \). Now we consider the linear fractional transformation \(\zeta = \frac{Ax + B}{Cx + D} = \varphi(x), AD - BC \neq 0 \). The cross ratio is known to be invariant under linear transformations, that is, for a cross product \([\beta_0, \beta_1, \beta_2, \beta_3] \) of \(\beta_i = \varphi(\alpha_i), i = 0, 1, 2, 3 \), we have \([\alpha_0, \alpha_1, \alpha_2, \alpha_3] = [\beta_0, \beta_1, \beta_2, \beta_3] \).

Also it hold \([x, \alpha_1, \alpha_2, \alpha_3] = [\zeta, \beta_1, \beta_2, \beta_3] \) \([\alpha_0, x, \alpha_2, \alpha_3] = [\beta_0, \zeta, \beta_2, \beta_3] \),

\([\alpha_0, \alpha_1, x, \alpha_3] = [\beta_0, \beta_1, \zeta, \beta_3] \) and \([\alpha_0, \alpha_1, \alpha_2, x] = [\beta_0, \beta_1, \beta_2, \zeta] \).

This last fact can be justified by noticing that a linear fractional
transformation $G(\zeta) = [\beta_0, \zeta, \beta_2, \beta_3]$ satisfy the equality $G \circ \varphi = F$ because $G \circ \varphi(x)$ and $F(x)$ are linear fractional transformations, and both transform $\alpha_0, \alpha_2, \alpha_3$ into $0, \infty, 1$ and a linear transformation is determined uniquely by values at three distinctive points. By the same reason we have

\begin{align*}
(1) & \quad [x, \alpha_1, \alpha_2, \alpha_3] = [\zeta, \beta_1, \beta_2, \beta_3] = \frac{\zeta - \beta_1 \beta_2 - \beta_3}{\zeta - \beta_2 \beta_3 - \beta_1}, \\
(2) & \quad [\alpha_0, x, \alpha_2, \alpha_3] = [\beta_0, \zeta, \beta_2, \beta_3] = \frac{\zeta - \beta_0 \beta_3 - \beta_2}{\zeta - \beta_2 \beta_3 - \beta_0}, \\
(3) & \quad [\alpha_0, \alpha_1, x, \alpha_3] = [\beta_0, \beta_1, \zeta, \beta_3], \\
(4) & \quad [\alpha_0, \alpha_1, \alpha_2, x] = [\beta_0, \beta_1, \beta_2, \zeta].
\end{align*}

However two of (1) – (4) are redundant equations because (1) is equivalent to (3) and (2) is equivalent to (4).

2.2 Differential equations of which Jacobi’s elliptic functions are solutions

Let $0 < k < 1$ and denote for simplicity $s = sn(t, k), c = cn(t, k), d = dn(t, k)$, which are referred to Jacobi's elliptic functions. Then it is well known that s, c, d are combined with the relations $c = \sqrt{1-s^2}, d = \sqrt{1-k^2s^2}, \dot{s} = cd, \dot{c} = -sd, \dot{d} = -k^2sc$. In other words they satisfy the differential equations

\[\dot{s}^2 = c^2d^2 = (1-s^2)(1-k^2s^2), \]
\[\dot{c}^2 = s^2d^2 = (1-c^2)((1-k^2)+k^2c^2) \quad \text{and} \quad \dot{d}^2 = k^2s^2c^2 = (1-d^2)(d^2 - (1-k^2)). \]

In addition to these if we set $u = \frac{s}{c}$, we have one more differential equation

\[\dot{u}^2 = (1+u^2)((1-k^2)+u^2). \]

Now we have the classification of the types (5)-(8) of differential equations associated with s, c, d, u:

\begin{align*}
(5) & \quad \dot{s}^2 = (1-s^2)(1-k^2s^2) = k^2(\zeta - \beta_0)(\zeta - \beta_1)(\zeta - \beta_2)(\zeta - \beta_3) = 0, \\
\beta_0 & = 1, \beta_1 = \frac{1}{k}, \beta_2 = -1, \beta_3 = -\frac{1}{k},
\end{align*}
\[
\begin{align*}
[\beta_0, \beta_1, \beta_2, \beta_3] &= \left(\frac{1-k}{1+k}\right)^2 \\
(\beta_1 - \beta_3)^2 (\beta_2 - \beta_0)^2 &= \frac{16}{k^2} \\
[\zeta, \beta_1, \beta_2, \beta_3] &= -\frac{\zeta - \frac{1}{k}}{1-k} \\
&\quad + \frac{1}{1+k} \\
[\beta_0, \zeta, \beta_2, \beta_3] &= \frac{\zeta - 1 - \frac{1}{k}}{\zeta + 1 + \frac{1}{k}} \\
(6\cdot c) \ z^2 &= (1 - \zeta^2)(1 - \frac{1}{k^2}) + k^2 \zeta^2 = -k^2(\zeta - \beta_0)(\zeta - \beta_1)(\zeta - \beta_2)(\zeta - \beta_3), \\
\beta_0 &= 1, \beta_1 = i\frac{\sqrt{1-k^2}}{k}, \beta_2 = -1, \beta_3 = -i\frac{\sqrt{1-k^2}}{k}, \\
[\beta_0, \beta_1, \beta_2, \beta_3] &= \left(\frac{k - i\sqrt{1-k^2}}{k + i\sqrt{1-k^2}}\right)^2 \\
(\beta_1 - \beta_3)^2 (\beta_2 - \beta_0)^2 &= -16 \left(\frac{1-k}{k^2}\right)^2 \\
[\zeta, \beta_1, \beta_2, \beta_3] &= \frac{\zeta - \beta_1 \beta_2 \beta_3}{\zeta - \beta_3 \beta_2 \beta_1} = \frac{\zeta - i\sqrt{1-k^2}}{k + i\sqrt{1-k^2}} \frac{k - i\sqrt{1-k^2}}{k + i\sqrt{1-k^2}} \\
[\beta_0, \zeta, \beta_2, \beta_3] &= \frac{\zeta - \beta_0 \beta_2 \beta_3}{\zeta - \beta_2 \beta_3 \beta_0} = \frac{\zeta - 1 - k i \sqrt{1-k^2}}{\zeta + 1 + k i \sqrt{1-k^2}} \\
(7\cdot d) \ z^2 &= (1 - \zeta^2)(\zeta^2 - (1 - \frac{1}{k^2})) = -(\zeta - \beta_0)(\zeta - \beta_1)(\zeta - \beta_2)(\zeta - \beta_3), \\
\beta_0 &= 1, \beta_1 = \sqrt{1-k^2}, \beta_2 = -1, \beta_3 = -\sqrt{1-k^2}, [\beta_0, \beta_1, \beta_2, \beta_3] = \left(\frac{1-\sqrt{1-k^2}}{1+\sqrt{1-k^2}}\right)^2 \\
(\beta_1 - \beta_3)^2 (\beta_2 - \beta_0)^2 &= 16(1-k^2)
\end{align*}
\]
\[
[\zeta, \beta_1, \beta_2, \beta_3] = \frac{\zeta - \beta_1 \beta_2 - \beta_3}{\zeta - \beta_3 \beta_2 - \beta_1} = \frac{\zeta - \sqrt{1-k^2}}{\zeta + \sqrt{1-k^2}} \frac{1 - \sqrt{1-k^2}}{1 + \sqrt{1-k^2}}
\]

\[
[\beta_0, \zeta, \beta_2, \beta_3] = \frac{\zeta - \beta_0 \beta_2 - \beta_3}{\zeta - \beta_2 \beta_3 - \beta_0} = \frac{\zeta - 1 - \sqrt{1-k^2}}{\zeta + 1 + \sqrt{1-k^2}}
\]

(8·u) \[
\dot{\zeta}^2 = (1 + \zeta^2) \left((1 - k^2) + \zeta^2\right) = \left(\zeta - \beta_0\right)\left(\zeta - \beta_1\right)\left(\zeta - \beta_2\right)\left(\zeta - \beta_3\right).
\]

\[
\beta_0 = i, \beta_1 = i \sqrt{1-k^2}, \beta_2 = -i, \beta_3 = -i \sqrt{1-k^2},
\]

\[
[\beta_0, \beta_1, \beta_2, \beta_3] = \left(\frac{1 - \sqrt{1-k^2}}{1 + \sqrt{1-k^2}}\right)^2
\]

\[
(\beta_1 - \beta_2)^2 (\beta_2 - \beta_0)^2 = 16(1-k^2).
\]

\[
[\zeta, \beta_1, \beta_2, \beta_3] = \frac{\zeta - \beta_1 \beta_2 - \beta_3}{\zeta - \beta_3 \beta_2 - \beta_1} = \frac{\zeta - i \sqrt{1-k^2}}{\zeta + i \sqrt{1-k^2}} \frac{1 - \sqrt{1-k^2}}{1 + \sqrt{1-k^2}}
\]

\[
[\beta_0, \zeta, \beta_2, \beta_3] = \frac{\zeta - \beta_0 \beta_2 - \beta_3}{\zeta - \beta_2 \beta_3 - \beta_0} = \frac{\zeta - i \sqrt{1-k^2}}{\zeta + i \sqrt{1-k^2}} \frac{1 - \sqrt{1-k^2}}{1 + \sqrt{1-k^2}}
\]

And (5) corresponds to \(sn(t,k)\), (6) to \(cn(t,k)\), (7) to \(dn(u,k)\) and (8) \newline
\(\frac{sn(t,k)}{cn(t,k)}\).

We will apply these classification in order to solve our differential equations.

2.3 Lemma

Let \(x = x(t)\) and \(\zeta = \zeta(t)\) satisfy \(\zeta = \frac{Ax + B}{Cx + D} \equiv f(x)\) and \(\beta_i = f(\alpha_i), \ i = 0,1,2,3\).

Then we have the following lemma.

Lemma 1

\[
(9) \quad \frac{(\alpha_i - \alpha_1)^2 (\alpha_2 - \alpha_0)^2 x^4}{(x - \alpha_0)^2 (x - \alpha_1)^2 (x - \alpha_2)^2 (x - \alpha_3)^2} = \frac{(\beta_i - \beta_1)^2 (\beta_2 - \beta_0)^2 \zeta^4}{(\zeta - \beta_0)^2 (\zeta - \beta_1)^2 (\zeta - \beta_2)^2 (\zeta - \beta_3)^2}
\]

Proof: From the equality \([x, \alpha_1, \alpha_2, \alpha_3] = [\zeta, \beta_1, \beta_2, \beta_3] \), or
\[
\frac{x - \alpha_1}{x - \alpha_1} \frac{\alpha_2 - \alpha_3}{\zeta - \beta_1} = \frac{\zeta - \beta_1}{\beta_2 - \beta_1}, \text{ we have}
\]
\[
\frac{(\alpha_i - \alpha_1) \hat{x}}{(y - \alpha_1) (\alpha_i - \alpha_2)} = \frac{(\beta_i - \beta_1) \hat{\zeta}}{(\zeta - \beta_1) (\beta_i - \beta_2)}
\]

by differentiation in \(t \). In the same way we have
\[
\frac{(\alpha_0 - \alpha_1) \hat{x}}{(y - \alpha_1) (\alpha_0 - \alpha_2)} = \frac{(\beta_0 - \beta_1) \hat{\zeta}}{(\zeta - \beta_1) (\beta_0 - \beta_2)},
\]
\[
\frac{(\alpha_1 - \alpha_0) \hat{x}}{(y - \alpha_1) (\alpha_1 - \alpha_2)} = \frac{(\beta_1 - \beta_0) \hat{\zeta}}{(\zeta - \beta_1) (\beta_1 - \beta_2)}
\]

and
\[
\frac{(\alpha_2 - \alpha_0) \hat{x}}{(y - \alpha_0) (\alpha_2 - \alpha_0)} = \frac{(\beta_2 - \beta_0) \hat{\zeta}}{(\zeta - \beta_0) (\beta_2 - \beta_0)}.
\]

Multiply these on each sides, we have
\[
\frac{(\alpha_1 - \alpha_1)^2 (\alpha_2 - \alpha_0)^2 (\alpha_3 - \alpha_2)^2 (\alpha_1 - \alpha_0)^2 \hat{x}^4}{(y - \alpha_0)^2 (x - \alpha_1)^2 (x - \alpha_2)^2 (x - \alpha_3) (\alpha_2 - \alpha_2) (\alpha_1 - \alpha_0)^2} = \frac{(\beta_0 - \beta_1)^2 (\beta_2 - \beta_0)^2 (\beta_1 - \beta_2)^2 (\beta_0 - \beta_0)^2 \hat{\zeta}^4}{(\zeta - \beta_1)^2 (\zeta - \beta_1)^2 (\zeta - \beta_0)^2 (\zeta - \beta_2)^2 (\beta_1 - \beta_2)^2 (\zeta - \beta_0)^2}
\]

Canceling out each sides of (10) by \([\alpha_0, \alpha_1, \alpha_2, \alpha_3] = [\beta_0, \beta_1, \beta_2, \beta_3]\), we have the result (9). //

Lemma 2. If \(2\hat{x}^2 = \pm b (x - \alpha_0)(x - \alpha_1)(x - \alpha_2) (x - \alpha_3), \) then we have
\[
\frac{\hat{\zeta}^4}{(\zeta - \beta_0)^2 (\zeta - \beta_1)^2 (\zeta - \beta_2)^2 (\zeta - \beta_3)^2} = \frac{(\alpha_1 - \alpha_1)^2 (\alpha_2 - \alpha_0)^2}{b^2 (\beta_0 - \beta_1)^2 (\beta_2 - \beta_0)^2}
\]

3. \(\ddot{x} + ax + bx^3 = 0, a > 0, b > 0 \)

We have now
\[
2\hat{x}^2 = -2ax^2 - bx^4 + E,
\]
where E must be nonnegative. Let write the right hand of (11) as
\[
-2ax^2 - bx^4 + E = -b(x - \alpha_0)(x - \alpha_1)(x - \alpha_2)(x - \alpha_3),
\]
The cross ratio of \(\alpha_0, \alpha_1, \alpha_2, \alpha_3 \) is
\[
(14) \quad \left[\alpha_0, \alpha_1, \alpha_2, \alpha_3 \right] = \left(\frac{\sqrt{c-a} - i \sqrt{c+a}}{\sqrt{c-a} + i \sqrt{c+a}} \right)^2.
\]

We are looking for a linear fractional transformation (cross ratio relation) which associated to the type of differential equations in section 2.2. We select (2) \(\beta_0 = 1, \beta_1 = \sqrt{1-k^2} \), \(\beta_2 = -1, \beta_3 = -i \sqrt{1-k^2} \) among equations (5) to (8) because roots of the right hand side consists of two real numbers and two imaginary numbers. Hence we have
\[
(15) \quad \left[\beta_0, \beta_1, \beta_2, \beta_3 \right] = \left(\frac{k - i \sqrt{1-k^2}}{k + i \sqrt{1-k^2}} \right)^2 = \left(\frac{\sqrt{c-a} - i \sqrt{c+a}}{\sqrt{c-a} + i \sqrt{c+a}} \right)^2.
\]

If we now take
\[
(16) \quad k = \sqrt{\frac{c-a}{2c}},
\]
then we have
\[
(17) \quad \frac{\sqrt{c-a} - i \sqrt{c+a}}{\sqrt{c-a} + i \sqrt{c+a}} = \frac{k - i \sqrt{1-k^2}}{k + i \sqrt{1-k^2}}.
\]

From (13) and (16) we have \((\alpha_1 - \alpha_3)^2 (\alpha_2 - \alpha_0)^2 = -16 \frac{c^2-a^2}{b^2} \) and
\[
(\beta_1 - \beta_3)^2 (\beta_2 - \beta_0)^2 = -16 \frac{1-k^2}{k^2} = -16 \frac{c+a}{c-a},
\]
so the relation (9) gets the form
\[
(18) \quad \frac{-16(x^2-a^2)\dot{x}^4}{b^2(x-\alpha_0)^2(x-\alpha_1)^2(x-\alpha_2)^2(x-\alpha_3)^2} = \frac{-16 \frac{c+a}{c-a} k^4 \dot{\zeta}^4}{(1-\zeta^2)^2 \left((1-k^2) + k^2 \zeta^2 \right)^2}
\]
from which we have
\[
(19) \quad \frac{\dot{\zeta}^4}{(1-\zeta^2)^2 \left(k^2 \zeta^2 + (1-k^2) \right)^2} = c^2,
\]
\[
(20) \quad \frac{d\zeta}{\sqrt{(1-\zeta^2) \left(k^2 \zeta^2 + (1-k^2) \right)}} = \sqrt{c}.
\]
The solution of the differential equation (20) is for any constant t_0

\[(17) \quad \zeta(t) = \pm cn\left(\sqrt{c} (t-t_0),k \right).\]

We have to determine a linear fractional transformation of ζ which is a solution x of the differential equation (11).

From (18), (20) we have

\[(22) \quad \begin{pmatrix} \frac{x-i}{\sqrt{\frac{c+a}{b}}} \\ \frac{x+i}{\sqrt{\frac{c+a}{b}}} \end{pmatrix} \begin{pmatrix} -\frac{c-a}{b} & +i \frac{c+a}{b} \\ -\frac{c-a}{b} & -i \frac{c+a}{b} \end{pmatrix} = \begin{pmatrix} \frac{\zeta-i}{\sqrt{\frac{1-k^2}{k}}} \\ \frac{\zeta+i}{\sqrt{\frac{1-k^2}{k}}} \end{pmatrix} \begin{pmatrix} -1+i \sqrt{\frac{1-k^2}{k}} \\ -1-i \sqrt{\frac{1-k^2}{k}} \end{pmatrix}.\]

From these relations, using (13) we get just one result

\[(24) \quad x(t) = \sqrt{\frac{c-a}{b}} \zeta(t).\]

Theorem 1. $2 \ddot{x}^2 = -2ax^2 - bx^4 + E$, $a > 0, b > 0$ has a solution

\[x(t) = \pm \sqrt{\frac{a^2 + Eb - a}{b}} cn\left(\left(a^2 + Eb\right)^{\frac{1}{2}} (t-t_0),k \right),\]

where t_0 is arbitrary real number and $k^2 = \frac{\sqrt{a^2 + Eb - a}}{2\sqrt{a^2 + Eb}}$.

4. $\ddot{x} - ax + bx^3 = 0, a > 0, b > 0$

In this case we have

\[(25) \quad 2 \ddot{x}^2 = 2ax^2 - bx^4 + E\]

Since we assume x is real valued, it holds $E \geq -\frac{a^2}{b}$. We will discuss two case,

$E > 0$ and $0 > E \geq -\frac{a^2}{b}$ to find solution of our differential equation. For the case, $E > 0$, we write the right hand side of (25) in the way:

\[2ax^2 - bx^4 + E = -b(x-\alpha_0)(x-\alpha_1)(x-\alpha_2)(x-\alpha_3), \quad c = \sqrt{a^2 + Eb}, \quad \alpha_0 = \sqrt{\frac{c+a}{b}}, \quad \alpha_2 = -\sqrt{\frac{c+a}{b}}, \quad \alpha_1 = i\sqrt{\frac{c-a}{b}}, \quad \alpha_3 = -i\sqrt{\frac{c-a}{b}}, \quad \text{which is the same as (13) except for the} \]
sign of a. Hence we have the following theorem,

Theorem 2. $2\dot{x}^2 = 2ax^2 - bx^4 + E \quad a > 0, b > 0, E > 0$ has a solution

$$x(t) = \pm \sqrt{\frac{a^2 + Eb + a}{b}} \operatorname{cn}\left(\frac{1}{2}(a^2 + Eb)^{1/2}(t-t_0), k\right),$$

where t_0 is arbitrary real number and $k^2 = \frac{a^2 + Eb + a}{2\sqrt{a^2 + Eb}}$

If we let $E \to 0$ in Theorem 2, then we have the following corollary

Corollary 3. $2\dot{x}^2 = 2ax^2 - bx^4, a > 0, b > 0$ has a solution

$$x(t) = \pm \sqrt{\frac{2a}{b}} \operatorname{sech}\left(\sqrt{a}(t-t_0)\right)$$

Now we assume that $0 > E \geq -\frac{a^2}{b}$.

(26) $2\dot{x}^2 = 2ax^2 - bx^4 + E = -b(x - \alpha_0)(x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$

where

(27) $c = \sqrt{a^2 + Eb}, \alpha_0 = \sqrt{\frac{a + c}{b}}, \alpha_1 = -\sqrt{\frac{a + c}{b}}, \alpha_2 = \sqrt{\frac{a - c}{b}}, \alpha_3 = -\sqrt{\frac{a - c}{b}}.$

From (26) it must be $\sqrt{\frac{a - c}{b}} < x < \sqrt{\frac{a + c}{b}}, -\sqrt{\frac{a + c}{b}} < x < -\sqrt{\frac{a - c}{b}}$, so we apply (7) to look for solution and letting

(28) $\beta_0 = 1, \beta_2 = -1, \beta_1 = \sqrt{1-k^2}, \beta_3 = -\sqrt{1-k^2},$

then we have $[\alpha_0, \alpha_1, \alpha_2, \alpha_3] = \left(\frac{\sqrt{a + c} - \sqrt{a - c}}{\sqrt{a + c} + \sqrt{a - c}}\right)^2$ and $[\beta_0, \beta_1, \beta_2, \beta_3] = \frac{1 - \sqrt{1-k^2}}{1 + \sqrt{1-k^2}} \left(\frac{1 - \sqrt{1-k^2}}{1 + \sqrt{1-k^2}}\right)^2$, which are equal, so we have

(28) $\frac{\sqrt{a + c} - \sqrt{a - c}}{\sqrt{a + c} + \sqrt{a - c}} = \frac{1 - \sqrt{1-k^2}}{1 + \sqrt{1-k^2}}.$

From which we have
(29) \(1 - k^2 = \frac{a - c}{a + c}, \quad k^2 = \frac{2c}{a + c}\).

Using these, the equality (9) for \(\alpha_0, \alpha_1, \alpha_2, \alpha_3\) in (27) get into

\[
\frac{16(a^2 - c^2)x^4}{b^2(x - \alpha_0)^2(x - \alpha_1)^2(x - \alpha_2)^2(x - \alpha_3)^2} = \frac{16\sqrt{1-k^2}\zeta^4}{(1-\zeta^2)^2(\zeta^2-(1-k^2))}
\]

or

\[
\frac{\zeta^4}{(1-\zeta^2)^2(\zeta^2-(1-k^2))} = \frac{(a + c)^2}{4}.
\]

Thus we have

(30) \(\zeta(t) = \pm dn\left(\sqrt{\frac{a + c}{2}t, k}\right)\).

Both relations (1) and (3) gives us the relation

(31) \(x = \sqrt{\frac{a + c}{b}}\zeta\).

In fact the equation (1) is

\[
\begin{pmatrix}
\frac{x - \frac{a - c}{b}}{x + \frac{a - c}{b}} \\
\frac{-\frac{a + c}{b} + \sqrt{\frac{a - c}{b}}}{-\frac{a + c}{b} - \sqrt{\frac{a - c}{b}}}
\end{pmatrix}
\begin{pmatrix}
\zeta - \sqrt{1-k^2} \\
\zeta + \sqrt{1-k^2}
\end{pmatrix}
\begin{pmatrix}
-1 + \sqrt{1-k^2} \\
-1 - \sqrt{1-k^2}
\end{pmatrix}
\]

from which we have

(32) \(\frac{x - \sqrt{\frac{a - c}{b}}}{x + \sqrt{\frac{a - c}{b}}} = \frac{\zeta - \sqrt{1-k^2}}{\zeta + \sqrt{1-k^2}}\).

It is easily seen (32) is equivalent to (31). Hence we have the following theorem.

Theorem 4. \(2x^2 = 2ax^2 - bx^4 + E\), \(0 > E \geq -\frac{a^2}{b}\), \(a > 0, b > 0\), has a solution, for any real \(t_0\)

\[
x(t) = \pm\sqrt{\frac{a^2 + Eb + a}{b}} dn\left(\sqrt{\frac{a^2 + Eb + a}{2}}(t - t_0), k\right)
\]

where \(k^2 = \frac{2\sqrt{a^2 + Eb}}{\sqrt{a^2 + Eb + a}}\).
We also get Corollary 3 from Theorem 4 when \(E \to 0 \).

5. \(\ddot{x} + ax - bx^3 = 0, a > 0, b > 0 \)

We devide the problem type into the three cases: \(0 < E < \frac{a^2}{b}, \frac{a^2}{b} < E \)

If we have \(E < 0 \), we set

\[
2\ddot{x} = -2ax^2 + bx^4 + E = b(x - \alpha_0)(x - \alpha_1)(x - \alpha_2)(x - \alpha_3),
\]

where

\[
\alpha_0 = \sqrt{a^2 - Eb}, \alpha_1 = \frac{c + a}{b}, \alpha_2 = -\frac{c - a}{b}, \alpha_3 = -i\sqrt{\frac{c - a}{b}}.
\]

Comparing (12)(13) and (33)(34), we notice that we get the same equation if we change \(a \) by \(-a\) and \(E \) by \(-E\). However there is a difference \(x \) in (33) must satisfy

\[
x^2 > \left(\frac{c + a}{b} \right)^2
\]

whereas \(x \) in (12) must satisfy \(x^2 < \left(\frac{c - a}{b} \right)^2 \). So we should take the differential equation instead of (20):

\[
\frac{d\zeta}{\sqrt{1 - \zeta^2 (1 - k^2)}} = i\sqrt{c}
\]

and its solution:

\[
\zeta(t) = \pm \text{cn} \left(i\sqrt{c} (t - t_0), k \right) = \frac{\pm 1}{\text{cn} \left(\frac{1}{\sqrt{c} (t - t_0)}, k' \right)}, \quad k'^2 = 1 - k^2
\]

Theorem 5 \(2\ddot{x} = -2ax^2 + bx^4 + E \) \((a > 0, b > 0), E < 0 \) has a solution, for any real \(t_0 \)

\[
x(t) = \pm \sqrt{\frac{a^2 - Eb + a}{b}} \frac{1}{\text{cn} \left(\frac{a^2 - Eb}{b} (t - t_0), k \right)} + \frac{\sqrt{a^2 - Eb - a}}{2\sqrt{a^2 - Eb}}
\]

Next if we have \(0 < E < \frac{a^2}{b} \), we factorize the right side in the following way:

\[
2\ddot{x} = b \left(x^2 - \frac{a}{b} \right)^2 - \left(\frac{a^2 - Eb}{b} \right) = b(x - \alpha_0)(x - \alpha_1)(x - \alpha_2)(x - \alpha_3),
\]

where
\[c = \sqrt{a^2 - Eb}, \alpha_0 = \frac{a-c}{b}, \alpha_1 = \frac{a+c}{b}, \alpha_2 = -\frac{a-c}{b}, \alpha_3 = -\frac{a+c}{b}. \]

We select (5) as the type of differential equation, or we let

\[\beta_0 = 1, \beta_1 = \frac{1}{k}, \beta_2 = -1, \beta_3 = -\frac{1}{k}. \]

Then cross ratios of (38) and (39) are respectively

\[[\alpha_0, \alpha_1, \alpha_2, \alpha_3] = \left(\frac{\sqrt{a+c} - \sqrt{a-c}}{\sqrt{a+c} + \sqrt{a-c}}\right)^2, \quad [\beta_0, \beta_1, \beta_2, \beta_3] = \left(\frac{1-k}{1+k}\right)^2. \]

Hence we could have

\[k = \frac{a-c}{a+c}, \quad \frac{\sqrt{a+c} - \sqrt{a-c}}{\sqrt{a+c} + \sqrt{a-c}} = \frac{1-k}{1+k}. \]

With respect to the relation between \(x \) and \(\zeta \), we have two possibilities. From (1) and (3) we have

\[x = \frac{a-c}{b}, \quad x = \frac{a-c}{b} \zeta, \]

respectively. From equations

\[(\alpha_1 - \alpha_3)^2 (\alpha_2 - \alpha_0)^2 = 16 \frac{a^2 - c^2}{b^2}, \quad (\beta_1 - \beta_3)^2 (\beta_2 - \beta_0)^2 = \frac{16}{k^2} \]

we have

\[\frac{16 \left(a^2 - c^2 \right) x^4}{b^2 (x - \alpha_0)^2 (x - \alpha_1)^2 (x - \alpha_2)^2 (x - \alpha_3)^2} = \frac{16k^2 \zeta^4}{(1 - \zeta^2)^2 (1 - k^2)^2 + k^2 \zeta^2}, \]

or

\[\frac{d\zeta}{\sqrt{(1 - \zeta^2)(1 - k^2)^2 + k^2 \zeta^2}} = \sqrt{\frac{a+c}{2}} dt, \]

from which we have the solution of (43)

\[\zeta(t) = \pm sn\left(\sqrt{\frac{a+c}{2}} (t - t_0), k\right). \]

Theorem 6. \(2x^2 = -2ax^2 + bx^4 + E \quad (a > 0, b > 0), \quad 0 < E < \frac{a^2}{b} \) has a solution, for any
real t_0,

$$x(t) = \pm \sqrt{\frac{a - \sqrt{a^2 - Eb}}{b}} \text{sn} \left(\sqrt{\frac{a + \sqrt{a^2 - Eb}}{2}} (t - t_0), k \right)$$

and

$$x(t) = \pm \sqrt{\frac{a - \sqrt{a^2 - Eb}}{b}} \left(\frac{1}{\text{sn} \left(\sqrt{\frac{a + \sqrt{a^2 - Eb}}{2}} (t - t_0), k \right)} \right),$$

where $k^2 = \frac{a - \sqrt{a^2 - Eb}}{a + \sqrt{a^2 - Eb}}$.

Finally if we have $\frac{a^2}{b} < E$, we factorize the right side in the following way:

(44) $2x^2 = b \left(x^2 - \frac{a}{b} \right) + \left(\frac{Eb - a^2}{b} \right) = b(x - \alpha_0)(x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$,

where $\alpha_0 = \overline{\gamma}, \alpha_1 = -\gamma, \alpha_2 = \gamma, \alpha_3 = -\overline{\gamma}, \gamma = \frac{\sqrt{Eb - a + i\sqrt{Eb + a}}}{\sqrt{2b}}$. We can define θ as $\tan \theta = \frac{\sqrt{Eb - a}}{\sqrt{Eb + a}}$, or $\gamma = |\gamma| e^{i\theta}$. We select (8) as the type of differential equation, or we let

(45) $\beta_0 = i, \beta_1 = i\sqrt{1 - k^2}, \beta_2 = -i, \beta_3 = -i\sqrt{1 - k^2}, \quad [\beta_0, \beta_1, \beta_2, \beta_3] = \left\{ \frac{1 - \sqrt{1 - k^2}}{1 + \sqrt{1 - k^2}} \right\}^2$.

Since $[\alpha_0, \alpha_1, \alpha_2, \alpha_3] = [\beta_0, \beta_1, \beta_2, \beta_3]$, we have $\frac{(\gamma + \overline{\gamma})^2}{4|\gamma|^2} = \left(\frac{1 - \sqrt{1 - k^2}}{1 + \sqrt{1 - k^2}} \right)^2 = \cos^2 \theta$

from which we have

(46) $1 - k^2 = \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right)^2 = \tan^2 \frac{\theta}{2}$.

12
Then we have
\[(\alpha_1 - \alpha_3)^2 (\alpha_2 - \alpha_0)^2 = |\gamma - \gamma'|^4 = 16|\gamma|^4 \cos \theta \quad \text{and} \quad (\beta_1 - \beta_3)^2 (\beta_2 - \beta_0)^2 = 16(1 - k^2).\]

By Lemma 1, we have
\[
\frac{\zeta^4}{(1 + \zeta^2)((1 - k^2) + \zeta^2)} = \frac{|\gamma|^4 \cos^4 \theta}{(1-k^2)} \quad \frac{x^4}{(x-\alpha_0)^2 (x-\alpha_1)^2 (x-\alpha_2)^2 (x-\alpha_3)^2} = \frac{b^2 |\gamma|^4 \cos^4 \theta}{4(1-k^2)}.
\]

Hence if we put \[\Theta^t = \frac{b^2 |\gamma|^4 \cos^4 \theta}{4(1-k^2)},\]
we have
\[
(46) \quad \zeta(t) = \pm \frac{\sin(\Theta(t-t_0), k)}{\cos(\Theta(t-t_0), k)}.
\]

We determine the relation between \(x\) and \(\zeta\). If we use the equation (1), we have
\[
(47) \quad \frac{x + \gamma - \gamma'}{2|\gamma|} = \zeta - i\sqrt{1-k^2} = \frac{\zeta + i\sqrt{1-k^2}}{1+\sqrt{1-k^2}},
\]
or we have
\[
(48) \quad \frac{x + \gamma - \gamma'}{2|\gamma|} e^{-i\theta} = \zeta - i\sqrt{1-k^2}.
\]

Using the relation (46), we have
\[
(49) \quad x = \frac{|\gamma| \tan \frac{\theta}{2} \zeta + \sqrt{1-k^2}}{\tan \frac{\theta}{2} \zeta - \sqrt{1-k^2}} = \frac{|\gamma| \zeta + \tan \frac{\theta}{2}}{\zeta - \tan \frac{\theta}{2}}.
\]

Next we use the relation (2), we have
\[
(50) \quad \frac{x - \gamma - \gamma'}{2\gamma'} = -\frac{\zeta - i}{\zeta + i},
\]
or we have
\[
(51) \quad \frac{x - \gamma - \gamma'}{2\gamma'} e^{2i\theta} = -\frac{\zeta - i}{\zeta + i}.
\]

From which we have the same formula as (49). Thus we obtain following theorem.

Theorem 7. \[2x^2 = -2ax^2 + bx^4 + E \quad (a > 0, b > 0), \quad \frac{a^2}{b} < E\] has a solution, for any real
\[t_0, x(t) = \frac{\left(\frac{E}{b} \right)^{1/3} \text{sn}(\Theta(t-t_0),k) + \tan \frac{\theta}{2} \text{cn}(\Theta(t-t_0),k)}{\text{sn}(\Theta(t-t_0),k) - \tan \frac{\theta}{2} \text{cn}(\Theta(t-t_0),k)}, \]

\[\Theta^2 = \frac{b^2}{4} \left[\cos^2 \theta \right] \quad \text{and} \quad k^2 = \frac{4 \cos \theta}{(1 + \cos \theta)^2}. \]

5. \(\ddot{x} - ax - bx^3 = 0, a > 0, b > 0 \)

For \(2x^2 = 2ax^2 + bx^4 + E \), we treat three cases distinctively as in section 4:

- \(E < 0, 0 < E < \frac{a^2}{b}, \frac{a^2}{b} < E \).

a) \(E < 0 \)

\[2x^2 = 2ax^2 + bx^4 + E = b \left(x^2 + \frac{\sqrt{a^2 - Eb + a}}{b} \right) \left(x + \frac{\sqrt{a^2 - Eb - a}}{b} \right) \left(x - \frac{\sqrt{a^2 - Eb - a}}{b} \right) \]

In this case we can use the result of Theorem 1. We only need to change \(t \) by \(it \) in the formula \(\ddot{x} - ax - bx^3 = 0, a > 0, b > 0 \). Then we have \(2x^2 = -2ax^2 - bx^4 - E \). Thus if we change \(t \) by \(it \) and \(E \) by \(-E \) in Theorem 1 and use the equation \(\text{cn}(it,k) = \frac{1}{\text{cn}(t,\sqrt{1-k^2})} \), we have

Theorem 8. \(2x^2 = -2ax^2 - bx^4 + E \), \(a > 0, b > 0 \) has a solution

\[x(t) = \pm \sqrt{\frac{a^2 - Eb - a}{b}} \frac{1}{\text{cn} \left(\frac{1}{\sqrt{(a^2 - Eb)^2} (t-t_0),k} \right)}, \]

where \(t_0 \) is arbitrary real number and \(k^2 = \frac{\sqrt{a^2 - Eb + a}}{2 \sqrt{a^2 - Eb}} \).

b) \(0 < E < \frac{a^2}{b} \)
\[2x^2 = 2ax^2 + bx^4 + E = b \left(x^2 + \frac{a + \sqrt{a^2 - Eb}}{b} \right) \left(x^2 + \frac{a - \sqrt{a^2 - Eb}}{b} \right) \]

Let \(c = \sqrt{a^2 - Eb} \). Then we have

\[2x^2 = 2ax^2 + bx^4 + E = b \left(x^2 + \frac{a + c}{b} \right) \left(x^2 + \frac{a - c}{b} \right) \]

If we put \(\alpha_0 = i\sqrt{\frac{a-c}{b}} \), \(\alpha_1 = i\sqrt{\frac{a+c}{b}} \), \(\alpha_2 = -i\sqrt{\frac{a-c}{b}} \), \(\alpha_3 = -i\sqrt{\frac{a+c}{b}} \), we have

\[2x^2 = b \left(x^2 + \frac{a+c}{b} \right) \left(x^2 + \frac{c-a}{b} \right) = b(x - \alpha_0)(x - \alpha_1)(x - \alpha_2)(x - \alpha_3), \]

\[\left[\alpha_0, \alpha_1, \alpha_2, \alpha_3 \right] = \left(\frac{\sqrt{a+c} - \sqrt{a-c}}{\sqrt{a+c} + \sqrt{a-c}} \right)^2 \]

and

\[(\alpha_1 - \alpha_3)^2(\alpha_2 - \alpha_0)^2 = 16\frac{a^2 - c^2}{b^2}.\]

Setting \(\beta_0 = i \), \(\beta_1 = i\sqrt{1-k^2} \), \(\beta_2 = -i \), \(\beta_3 = -i\sqrt{1-k^2} \), we have

\[\left(1 - \sqrt{1-k^2} \right)^2 = \left(\frac{\sqrt{a+c} - \sqrt{a-c}}{\sqrt{a+c} + \sqrt{a-c}} \right)^2.\]

Thus we can put \(k^2 = \frac{2c}{a+c} \), \(1-k^2 = \frac{a-c}{a+c} \).

From Lemma 1,

\[\frac{16\frac{a^2 - c^2}{b^2}x^4}{(x - \alpha_0)^2(x - \alpha_1)^2(x - \alpha_2)^2(x - \alpha_3)^2} = \frac{16(1-k^2)x^4}{(1+\zeta^2)^2 \left((1-k^2) + \zeta^2 \right)^2},\]

or we have

\[\frac{\zeta^4}{(1+\zeta^2)^2 \left((1-k^2) + \zeta^2 \right)^2} = \left(\frac{a+c}{4} \right)^2.\]

Hence it holds
\[\zeta(t) = \pm \frac{\sqrt{\frac{a+c}{2}(t-t_0),k}}{cn\left(\frac{a+c}{2}(t-t_0),k\right)} \cdot \zeta(t) = \pm i \frac{\sqrt{\frac{a+c}{2}(t-t_0),k}}{cn\left(\frac{a+c}{2}(t-t_0),k\right)}\]

Since
\[\left[x, \alpha_1, \alpha_2, \alpha_3\right] = -\frac{x-i \sqrt{\frac{a+c}{b}}}{x+i \sqrt{\frac{a+c}{b}}} \sqrt{a+c-\sqrt{a-c}} \sqrt{a+c+\sqrt{a-c}}\]

and
\[\left[\zeta, \beta_1, \beta_2, \beta_3\right] = \frac{\zeta-i \sqrt{1-k^2}}{\zeta+i \sqrt{1-k^2}} \frac{1-1-1-k^2}{1+1-k^2}, \text{ we have } -\frac{x-i \sqrt{\frac{a+c}{b}}}{x+i \sqrt{\frac{a+c}{b}}} = \frac{\zeta-i \sqrt{1-k^2}}{\zeta+i \sqrt{1-k^2}},\]

from which we have
\[x(t) = -\sqrt{\frac{a+c}{b}} \sqrt{1-k^2} \frac{1}{\zeta(t)} = -\sqrt{\frac{a-c}{b}} \frac{1}{\zeta(t)}\]

Next since \[\left[\alpha_0, x, \alpha_2, \alpha_3\right] = -\frac{x-i \sqrt{\frac{a-c}{b}}}{x+i \sqrt{\frac{a-c}{b}}} \sqrt{a+c-\sqrt{a-c}} \sqrt{a+c+\sqrt{a-c}}\], we

Have \[\frac{x-i \sqrt{\frac{a-c}{b}}}{x+i \sqrt{\frac{a-c}{b}}} = \frac{\zeta-1}{\zeta+1}, \text{ from which we have also } x(t) = i \sqrt{\frac{a-c}{b}} \zeta(t)\]

Theorem 9. \[2x^2 = 2ax^2 + bx^4 + E (a > 0, b > 0), \quad 0 < E < \frac{a^2}{b}\] has a solution, for any real
\[t_0, x(t) = \pm \frac{\sqrt{a-\sqrt{Eb-a^2}}}{b} \frac{sn\left(\frac{a+\sqrt{Eb-a^2}}{2}(t-t_0),k\right)}{cn\left(\frac{a+\sqrt{Eb-a^2}}{2}(t-t_0),k\right)}\]
and \(x(t) = \pm \sqrt{\frac{a - \sqrt{ab - a^2}}{b}} \left(\frac{a + \sqrt{Eb - a^2}}{2} (t - t_0), k \right) \)

where \(k^2 = \frac{2a^2 - Eb}{a + \sqrt{ab - a^2}} \).

c) \(\frac{a^2}{b} < E \)

\[
2x^2 = 2ax^2 + bx^4 + E = b \left(x^2 + \frac{a}{b} + i\sqrt{E - a^2/b} \right) \left(x^2 + \frac{a}{b} - i\sqrt{E - a^2/b} \right)
\]

\[
= b(x - \alpha_0)(x - \alpha_1)(x - \alpha_2)(x - \alpha_3)
\]

where \(\alpha_0 = \gamma, \alpha_1 = -\gamma, \alpha_2 = \gamma, \alpha_3 = -\gamma, \gamma = \frac{\sqrt{E + a + i\sqrt{E - a}}}{\sqrt{2b}} \). We can define \(\theta \)

as \(\tan \theta = \frac{\sqrt{E - a}}{\sqrt{E + a}} \), or \(\gamma = |\gamma|e^{i\theta} \). From now on we can have a same discussion as

Theorem 7 only by changing \(a \) into \(-a \). We have thus

Theorem 10

\[
2x^2 = 2ax^2 + bx^4 + E \quad (a > 0, b > 0) \quad , \quad \frac{a^2}{b} < E \quad \text{has a solution}, \quad \text{for any real}
\]

\[
t_0, x(t) = \frac{\left(\frac{E}{b} \right)^{\frac{1}{2}} \left(\frac{1}{2} \right) \left(\Theta(t - t_0), k \right) + \tan \frac{\theta}{2} cn(\Theta(t - t_0), k)}{sn(\Theta(t - t_0), k) - \tan \frac{\theta}{2} cn(\Theta(t - t_0), k)},
\]

\[
\Theta^4 = \frac{b^2 |\gamma|^4 \cos^4 \theta}{4(1 - k^2)} \quad \text{and} \quad k^2 = \frac{4 \cos \theta}{(1 + \cos \theta)^2}.
\]