Truncated moment problems on \mathbb{R}^n are treated. Denote by Z_+^n the set of non-negative integers and let $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$ for $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in Z_+^n$. Let $y = (y_\alpha)_{\alpha \in Z_+^n}, |\alpha| \leq k$ be a real multisequence of degree k in n variables and $K \subseteq \mathbb{R}^n$ be a closed set. The truncated K-moment problem of degree k is a problem to find a K-representing measure μ such that $y_\alpha = \int_{\mathbb{R}^n} x^\alpha d\mu(x), \forall \alpha \in Z_+^n, |\alpha| \leq k$ where μ is a positive Borel measure on \mathbb{R}^n supported in K, and to discuss about necessary or sufficient conditions for the existence of such measures. To do this, the moment matrices $M_d(y) = (y_{\alpha+\beta})_{|\alpha|,|\beta| \leq d}$ and the Riesz functional are employed. The Riesz functional $L_y : R[x_1, x_2, \ldots, x_n] \to R$ is defined by $L_y(p) = \sum p_\alpha y_\alpha$ for a polynomial of degree k, $p = \sum p_\alpha x^\alpha$ and $y = (y_\alpha)_{\alpha \in Z_+^n}$. It is easily seen that if μ is K-representing measure, then L_y is K-positive, that is $L_y(p) \geq 0$ for $p|_K \geq 0$. Conversely it is shown that if L_y is K-positive, then $y = (y_\alpha)_{\alpha \in Z_+^n}$ admits a representing measure supported in K. When L_y is strictly K-positive, then some quadratic ($k = 2$) K-moment problems are solved. For $K = S(q)$ and $K = E(q)$, a complete solution is given. Here we are setting $S(q) = \{x \in \mathbb{R}^n | q(x) \geq 0\}$ and $E(q) = \{x \in \mathbb{R}^n | q(x) = 0\}$, where $q(x)$ a quadratic polynomial. Also we can see a result for $n = 2, k = 4$ case. Furthermore we would have so much insights about truncated K-moment problems from the numerical examples calculated in this article.